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Abstract 

A complete list of (3 + 1)-dimensional superspace 
groups is presented. These groups describe the sym- 
metry of incommensurate crystal structures with a 
one-dimensional modulation. A short discussion is 
given of applications. Extinction rules and Bravais 
types are tabulated in order to facilitate the deter- 
mination of the superspace-group symmetry.  

1. Introduction 

This paper deals with crystals giving sharp diffraction 
spots in a pattern which requires not three, but four, 
basis vectors in reciprocal space. Hence, a diffraction 
vector H can be written as 

H = ha* + kb* + l¢* + mq, h, k,/, m integers, 

while the coefficients a, fl and 7 in 
(1.1) 

q---aa* + fib* + yc* (1.2) 

are not all fixed rational numbers. (The convention 
adopted here is a. a* = 1 etc.) 

Such crystals represent the case d = 1 among the 
larger set of ' incommensurate  structures', requiring 3 + 
d reciprocal basis vectors, cf. Janner & Janssen (1977). 
The cases d = 2 and d = 3 are known to occur in nature 
as well, but they are less frequent than the case of 
'one-dimensional modulation' (d = 1) considered here. 

For these structures there is no three-dimensional 
space-group symmetry,  but an extended symmetry 
concept, as explained below, restores the characteristic 
of crystals: a lattice of symmetry translations. In 
correspondence with (1.1), such a lattice requires four 
basis vectors. By setting a*, b* and c* apart from q in 
(1.1), we imply that the lattice A* spanned by these 
vectors is reciprocal to the 'basic lattice' A. The latter is 
chosen so as to express the periodicity of a relevant 
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approximation to the real structure. A is determined to 
a large extent by the point symmetry of the diffraction 
spots in reciprocal space. If that diffraction aspect is 
hexagonal, tetragonal, trigonal or orthorhombic, all 
spots lie on an array of lines parallel to the main axis 
(for orthorhombic, one of the binary axes). In direct 
space, this corresponds to a two-dimensional net of 
symmetry translations in the usual sense. Hence, the 
incommensurability refers only to the sequence of spots 
on the lines just mentioned, the direction of which will 
be termed the c* direction throughout. The magnitude 
of c* (and thus of c) is not defined, though there are not 
more than two essentially different choices. For the 
monoclinic case: either there is an array as above ('axial 
monoclinic') or all spots lie in equidistant planes parallel 
to the mirror plane ( 'planar monoclinic'). In the latter 
case there is a true symmetry translation c along the 
binary axis. Though this leaves a much wider choice for 
the basic lattice than in the former case, there are again 
just two alternatives differing essentially from the 
symmetry point of view. If the diffraction aspect is 
triclinic there is not necessarily a concentration of 
spots. The basic lattice is not restricted geometrically 
but the symmetry is utterly trivial anyhow. 

In any case the basic lattice is not completely 
determined by the geometry of the diffraction spots and 
a choice must be made. In that respect, two classes of 
structures can be distinguished. 

(i) There is a conspicuous set of strong 'main 
reflections', situated on nodes of a lattice A*, which can 
be made to correspond to m = 0 in (1.1). The vector q 
is essentially determined by the remaining reflections 
called satellites which have m :/: 0. Their intensity 
vanishes rapidly for increasing values of I ml. The basic 
lattice is clearly indicated as the one of which A* forms 
the reciprocal lattice. The structure can be described by 
periodic distortions of a normal crystal structure, the 
so-called basic structure. This is the class studied by de 
Wolff (1974) [referred to as (I)]. 
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(ii) In reciprocal space, there is no unique lattice of 
striking main reflections accompanied by satellites. In 
the cases published so far, it has been found that the 
structures can be obtained again by periodic distor- 
tions, this time of a 'composite basic structure'. The 
latter consists of two or more interpenetrating normal 
crystal structures which are mutually incommensurate. 
Class (ii) was studied by Janner & Janssen (1980b) 
[indicated here as (II)]. 

Surprisingly, the symmetry of class (ii) structures can 
be described by exactly the same groups which express 
the symmetry of class (i) crystals. This can be 
understood by looking at Fig. 1, which illustrates the 
classes (i) and (ii) for the case of one-dimensional 
modulation of a one-dimensional crystal. Here we use 
the result (I) that, for d = 1, an incommensurate crystal 
in n-dimensional position space can be seen as the 
intersection of that space with an (n + 1)-dimensional 
crystal, the so-called supercrystal. Hence our incom- 
mensurate (n = 1) crystal appears on a line L 
intersecting a planar, two-dimensionally periodic struc- 
ture. The crystal is incommensurate provided that L is 
not parallel to a net line of the planar translation net. 
The supercrystal consists of a pattern of lines with an 
oscillating density and/or direction but with a well- 
defined average direction. There is a distinct line for 
each atom of the crystal. The atomic positions coincide 
with the intersections of L with these lines. 

In the class (i) structures, Fig. l (a)  and (b), these 
lines have just one average direction which is parallel to 
net lines of the translation net of the planar structure. 
Clearly the spacing between these net lines, measured 
on L, is the period of the one-dimensional basic lattice. 

In the class (ii) structure of Fig. l(c), however, the 
fines representing atoms have different average direc- 
tions, each again parallel to a net line. The two 
corresponding net-fine spacings, measured on L, are 
equally plausible periods for the basic lattice. From a 
structural standpoint, class (ii) may seem unacceptable 
since it leads to overlapping atoms in L. However, in 
higher dimensions (n = 2 or 3), it is easy to conceive of 
configurations free from overlap, as they do indeed 
occur for the compounds mentioned in (II) as well as 
for certain surface structures, cf. Janssen, Janner & de 
Wolff (1980). 

The symmetry correspondence between the two 
classes can now be exemplified for linear crystals. As 
shown in (I), all symmetry operations of the planar 
structure which map the line L into a line parallel to it 
are relevant for the linear one. These are symmetry 
translations and, possibly, inversion. Hence structures 
in both classes can have a symmetry based on either p l  
or p i for the planar supercrystal. Of course, less trivial 
and more numerous groups are involved in describing 
the symmetry of three-dimensional incommensurate 
crystals - but there, too, each can occur for structures 
in class (i) as well as in class (ii). 

The present tabulation uses the basic lattice as a 
given reference system. It is therefore particularly suited 
to class (i) structures. On the other hand, it follows 
from the above conclusion that no possible symmetry 
group is excluded by our approach. Moreover, in all 
class (ii) structures we know at present, one of the 
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Fig. 1. Incommensurate one dimensional crystal structures with d 

= 1. For each case a unit cell of the two-dimensional supercrystal 
(shaded) and the period a of the basic lattice are shown. Atoms 
of two different kinds are indicated by full and open circles. (a) 
Class (i), displacive; (b) class (i), substitutional, as shown by 
varying dash length and circle size; (e) class (ii), displacive, with 
two equally plausible periods a 1 and a2. 
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subsystems is distinguished as a host structure in the 
channels of which the other(s) are embedded. Then its 
basic lattice is the obvious choice for any description 
and is the best starting point for the classification here 
as well. 

The basic lattice should not be associated too closely 
with the basic structure mentioned before. The latter is 
merely a zero-order approximation of the actual 
structure. It is not generally definable in an exact 
manner. A composite basic structure does not even 
possess a three-dimensional lattice of symmetry trans- 
lations. In symmetry considerations the concept of a 
basic structure is not needed though it will be 
convenient to express symmetry operations in terms of 
such a concept. 

2. Superspaee groups 

Symmetry operations can be described analytically (cf. 
§ 3), but their principal features can be understood from 
Fig. 1. There we observe that any vector of the basic 
lattice in L becomes an extended symmetry translation 
vector if supplemented by a parallel shift of L, such that 
the resulting translation is a symmetry operation of the 
planar supercrystal. Similarly, if the supercrystal has 
inversion centres, each of these yields a symmetry 
operation on L provided that L is brought to the 
corresponding inverted position. In both cases, the 
supplementary operation (shift and/or inversion of the 
line L in the supercrystal) can be expressed as an 
operation on a coordinate t. This extra coordinate 
measures the position of L, from an arbitrary origin, in 
the direction of the net lines defining the basic lattice on 
L as discussed before. The t scale is determined by 
requiring that a shift At  = 1 corresponds to a 
supercrystal period in the direction of those net lines 
(the t-axis direction). 

The variable t expresses an extra degree of freedom, 
which can be visualized for class (i) crystals (especially 
displacive cases like those of Fig. l a) as the movement 
of a wave through the crystal, but which is quite 
generally valid. In the case of d-dimensional modula- 
tion of a three-dimensional crystal, there are d extra 

• degrees of freedom. They are comparable with the 
translational movements of a normal crystal in R 3. 
With these extra dimension(s), an appropriate new kind 
of symmetry operation (ge, gJ) can be defined, where ge 
is an element of a normal space group G e in R 3 (the 
'external' or 'positional' space) while gl acts on d 
coordinates in the 'internal' space based on the extra 
dimension(s). The group G e is called the basic space 
group. Often it is also the space group of the basic 
structure. The translations contained in G e are those of 
the basic lattice. 

The group formed by all operations (ge, g,,) which 
leave the supercrystal, corresponding to an incom- 
mensurate structure, invariant will be called its super- 

space group. The appropriate form of gE and gz was 
worked out for the case d = 1 by de Wolff (1974, 
1977), whereas Janner & Janssen (1977, 1979) have 
extended the theory to the general case. This work has 
been applied in various examples of symmetry classi- 
fication by Bak & Janssen (1978) and Janner & 
Janssen (1980a,b). It has also led to several appli- 
cations in structure analysis (van Aalst, Den Hollander, 
Peterse & de Wolff, 1976; Valentine, Cavin & Yakel, 
1977; Yamamoto, Nakazawa & Tokonami, 1979) and 
to a theory on the dynamics of incommensurate 
crystals by Janssen (1979). 

With a view to these and similar kinds of appli- 
cation, the authors have undertaken the derivation and 
complete listing of all superspace groups for the case d 
= 1. For two-dimensional incommensurate structures 
(n = 2), the relevant groups have been listed for both d 
= 1 and d = 2 by Janssen, Janner & de Wolff (1980). 
The list of Bravais types for d = 1 has been given by 
Janner, Janssen & de Wolff (1979). 

A list of systematic extinctions is also given, so as to 
enable the user to identify the possible superspace 
group(s) for a given diffraction pattern. 

The group tables follow the pattern of In ternat ional  
Tables f o r  X-ray  Crystal lography (1969). With the 
extended symbols, it should not be difficult to complete 
the ge operations from those tables with the corres- 
ponding gl ones in the form suited to the case at hand 
(that is, in terms of displacements, occupation densities 
or otherwise) by the rules given in §§ 3 and 4. Thus, a 
foundation is established for the calculation of struc- 
ture factors or other structure-dependent quantities. 

3. Symmetry operations 

For incommensurate crystal structures with d = 1, 
locally defined quantities like the electron density p 
correspond to quantities (/3) which do not merely 
depend on position r but also on t such that/3(r, t = 0) 
= p(r). In the one-dimensional situation of Fig. 1, /3 
would correspond to a two-dimensional periodic func- 
tion in the plane of that figure, while p is the value of 
that function on the line L (which corresponds to a 
constant value of t). A symmetry operation can be 
defined in terms of/3 as follows. A combination of ge: r 
--, r' and g~: t --, t' is a symmetry operation if for all 
r, t:/Y(r', t ') =/~(r, t). It has the form 

r' = Rr + s (3.1) 

t' = et + ~ -  q.s. (3.2) 

(Another way of expressing a symmetry operation, in 
terms of, for example, atomic positions and displace- 
ments, is given in the second half of this section.) Here 
R, the homogeneous part of the normal space-group 
operation gE, is a point-group operation; hence the 
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translation s can be split into an intrinsic part s o and a 
part s r which depends on the choice of origin: 

s = s o + s r. ( 3 . 3 )  

The intrinsic part, s 0, is left invariant by R and is 1/n of 
the translation ~e when R is of order n. This part is 
non-zero only for translations (R = 1, So = translation 
vector) and for screw or glide operations. In (3.2), e = 
+ 1 and 6 is a parameter which is an integer for all 
translations. 

The combinations (R, e) are restricted by the relation 
(de Wolff, 1977) 

eq -- Rq = n*, (3.4) 

where n* is a vector of the reciprocal of the basic 
lattice. On the other hand, (3.4) is a restriction on q as 
well. This can be stated in terms of its (mutually 
perpendicular) components qt and qr such that 

q -- qt + q r  ( 3 . 5 )  

The vector qi is the component of q in the subspace left 
invariant by tR  for all pairs (R,e) occurring in 
symmetry operations (3.1-3.2): 

eq t - -  R q  t = 0 .  ( 3 . 6 )  

For the systems yielding diffraction spots on lines or 
planes in reciprocal space (cf  Introduction), ql is 
parallel to these lines or planes, while qr is, if non-zero, 
normal to them. In the triclinic case, qr = 0. The 
coordinates of qr (with respect to a basis of A*) are 
simple rational fractions, whereas those of qi are, in 
general, irrational. 

In terms of the components of s and q introduced 
above, (3.2) becomes 

t' = et + (J -- qr" s) - qt" So - qt" Sr" (3.7) 

The last term qt. sr is merely a correction needed if the 
origin is not situated on the symmetry element; it 
vanishes identically for e = + 1. The term q~. s o is the 
intrinsic irrational change in t, since it is independent of 
the origin. Similarly, the term 

r = ~ -  qr' S (3.8) 

can be called the intrinsic rationai increment in t. This r 
is invariant under a change of origin if e = +1. 
(Strictly speaking for elements with e = - 1 ,  r is rational 
only for a suitable zero point on the t scale.) It is the 
most convenient parameter for characterizing g~ in 
superspace-group symbols as well as for extinctions. 

The transformation of a distortion wave under the 
action of the superspace-group element (3.1-3.2) will 
now be described, firstly for the modulation of a scalar 
quantity. Consider a modulation of the occupation 
probability p~ for the/ th atom (i = 1 .... N if there are N 
atoms in the unit cell) of the basic structure. This 
function may, for example, describe the distribution of 

atoms over two different positions [see Janner & 
Janssen (1980a), § 7]. Such modulated quantities are 

0 0 is the position periodic functions of q. rnt + t, where rni 
of the ith atom in the unit cell given by the basic lattice 
vector n. If r7 denotes its position within the unit cell, 
one has 

0 _ _  r n t -  n + r °. (3.9) 

The occupation probability for the atom in the position 
0 is rnt 

p =p i (q . r ° t  + t). (3.10) 

The function pt(x) is periodic: 

pt(x  + 1) =p i (x ) .  (3.11) 

If the operation (3.1) transforms the positions in such a 
way that 

r°ml = R r°ni + s (3.12) 

(where i and j denote atoms of the same chemical kind), 
the corresponding symmetry condition for p is 

pj(x)  = pt[e(x--  J + m*.r~)] (3.13) 

if the reciprocal-lattice vector m* is given by m* = eq -- 
R - l q .  

The symmetry condition can also be formulated 
independently of the specific atom positions, but then 
one needs a cell-dependent function Pni defined by 

0 0 t). (3.14) Pni(qi" rni + t) = Pt(q" rnt + 

Then (3.13) is equivalent to 

p,,o(x) = pnt[ t (x--  z)]. (3.15) 

Similarly, the symmetry condition for a vector 
function, such as the displacement vector field u~ of the 
/th kind of atom in a displacively modulated crystal is 

UI(x) = Rut[e(x--  J + m*.r~)]. (3.16) 

Now consider the case of composite crystals in class 
(ii), consisting of a number of interpenetrating mutually 
incommensurate subsystems like the iodine and TTF 
subsystems in TTFTI5 (Johnson & Watson 1976). The 
subsystems are labelled by the index v. Each of ttiem is 
supposed to be a somewhat distorted normal crystal 
structure, and is described with reference to the lattice 
of symmetry translations of its own basic structure with 
basis vectors avl, av2, av3. Usually, one of these lattices 
will serve as the basic lattice for the whole structure. 
Anyhow, the reciprocal-lattice vectors for each sub- 
system are possible diffraction vectors. This means that 
the reciprocal basis vectors of the vth subsystem can be 
expressed as in (1.1): 

* a *  b *  c*  ark = Z~I + Z~¢ 2 + Z~3 + Zk4 q, k - -  1, 2, 3, 

(3.17) 

Zy a being integer coefficients. Now the position of the/th 
atom (i = 1,.., N,  if there are N o subsystem atoms in 
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their corresponding unit cell) in the unit cell n of the 
vth subsystem is given by 

3 

o o _ t ~ Z k 4  ( 3 . 1 8 )  r n v i : n v  + rv  I v ark ,  
k = l  

where {ark} (k = 1, 2, 3) is the basis reciprocal to 
(3.17). So the positions depend linearly on t, except of 
course in the subsystem yielding the basic lattice (Z~, 4 = 
0). If (3.1-3.2) is a symmetry transformation, then the 
position of the atom labelled by n v i  is transformed 
according to 

3 

r ° = R ( n v  + r°,l) + s - e( t - -  J + q.s)  ~ Zy,4 R a ~ k .  m u j  
k = l  

(3.19) 
Conversely, if for every atom labelled by n v i  there is 
another one of the same chemical kind labelled by m l t j ,  

such that (3.19) holds, then the corresponding trans- 
formation (3.1-3.2) is a symmetry operation for the 
composite basic structure. (In the TTFTI 5 example g = 
v, but this is not necessarily so.) In addition, there will, 
in general, exist an interaction between the subsystems 
leading to displacive modulation. For the ensuing 
displacements the transformation (3.16) is valid. 

4 .  B r a v a i s  t y p e s ,  e q u i v a l e n c e  c r i t e r i a  a n d  n o m e n c l a t u r e  

Since the transformations (3.1-3.2) define an operator 
in (r, t) space, superspace groups for d = 1 are in fact 
four-dimensional space groups. However, not every 
four-dimensional space group is a superspace group. 
The separation of each operation into g e  and gz restricts 
the groups to the category of (3 + 1)-reducible groups. 
Further restrictions follow from relation (3.4). 

The translations in R 4 are those transformations 
(3.1-3.2) for which R = 1. Hence, because q in (3.4) 
has at least one irrational component, t = 1. They are 
given by 

r' = r + n ( 4 . 1 )  

t' = t -  q. n + m, (4.2) 

where n can be any vector of the basic lattice A and m 
any integer. Rather than using the Bravais types in R4, 
we shall classify translation lattices for superspace 
groups by an equivalence principle adapted to the 
special r61e assigned to the basic lattice. Firstly, we call 
the h o l o h e d r a l p o i n t  g r o u p  of the lattice the group of all 
pairs (R, e), with R an orthogonal transformation in R 3 
and e = + 1, such that the basic lattice A is left invariant 
by R and (R,e) satisfies (3.4) for some n* in the 
reciprocal lattice A*. Then two incommensurate struc- 
tures belong to the same B r a v a i s  t y p e  if there are bases 
of the basic lattices A and A '  such that (i) the point 
groups consisting of elements R and R' ,  respectively, 
have the same (matrix) form, (ii) for corresponding 

elements of the holohedral point groups, e = e', (iii)the 
rational vectors qr and q" have the same components, 
up to a common sign. 

In this way, 24 Bravais types (or classes) are found. 
We denote them by the symbols of their superspace 
groups (see below). The full list given in Table 1 shows 
14 types which are straightforward extensions of 
Bravais types in R 3. The remaining ten have various 
kinds of centring in planes or spaces cofitaining the t 
axis. The latter are distinguished by their qr vectors. For 
instance, if in (1.2) a = ½, fl = 0 and 7 is irrational ( i .e .  

qr -- ½a* and qi is directed along c*), there is a symmetry 

Table 1. R e f l e c t i o n  c o n d i t i o n s  f o r  t h e  24 B r a v a i s  

c l a s s e s  

First column: number of the Bravais class. Second column: symbol 
of the Bravais class. Third column: relation between H, K, L in 
(5.1) and h, k, l in (1.1). If not stated otherwise: H = h, K = k, 
L = L The axes transform as the indices when putting m = 0 in 
the third column. Fourth column: reflection conditions. Fifth 
column: qt (top of each system) and qr with respect to the con- 
ventional reciprocal basis a*, b*, e*. 

Triclinic ap7 
1 PP~ - - 000 

Planar monoclinic (e unique) aflO 

2 pn_/m _ _ 000 
- -  1 1 

3 C e-2/m L = 2 l + m  L + m = 2 n  00~ 
- -  1 1 

4 pn2/m _ H + L = 2n 000 
- - ] 1  

Axial monoclinic (e unique) 007 
5 pp2:m_ _ _ 000 

- -  1 1 

6 A n/m- H = 2 h + m  H + m = 2 n  ~00 
"- 1 1 

7 ps2/m _ H + L = 2n 000 
- - 1 1  

8 Bn2/~ K = 2 k + m  H + L = 2 n ,  K + m = 2 n '  

Orthorhombic 007 
9 p p m m m  _ 0 0 0  

- -  1 1 i  

10 ]=l Pmmm K = 2k  + m K + m = 2n 0~0 
- -  l l f  

11 W Pmmm t [ K = 2k  + m K + m = 2n, H + m = 2n' 
" 11i H = 2 h + m  

12 plmmm __ H + K + L = 2n 000 
- -  1 1 1  

13 pCmmm H + K = 2n 000 
- - 1 1 i  - 

14 Lcmm~ H = h + m  H + K + m = 2 n  100 
- -  1 1 1  

15 pAmm~ _ K + L = 2n 000 
- -  1 1 1  

16 A Ammm H = 2h + m H + m = 2n, K + L = 2n' ~00 
" -  1 1 1  

17 pFmmm _ H + K = 2n, H + L = 2n' 000 
- -  1 1 i  

18 L Fmmm- H = h + m H + K + m = 2n, K + L = 2n' 100 
- -  1 1 1  

Tetragonal 007 
19 pP4/mmm _ 000 

- -  1 i l l  

w e 4 / m m  m [ H = h + k + m 20 ,, ] i 1 1 [ K = k - h  H + K + m = 2 n  ~ 0  

21 pl4/mmm _ H + K + L = 2n 000 
- - 1 i l l  

Trigonal/hexagonal 007 
22 pR~ _ H - K + L = 3 n  000 

23 R e~-~m / H = 2 h + k + m  H - - K - - m = 3 n  ~0 
" "  1 1 1  K = k - h  

24 pP6/_r~nm _ 

- 1 111 - 000 
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translation which transforms coordinates according to 
(4.1-4.2) as x -, x + 1, y --, y, z --, z, t -* t - ½. So, in 
R 4, the x, t plane is centred. The lattice is a centring of 
the one with the same qi but with qr -= 0. 

We define superspace-group types - that is, sets of 
equivalent superspace groups - by an equivalence 
principle, which is almost the same as for normal space 
groups. Two superspace groups are equivalent if there 
are right-handed bases in position space, a choice of 
origin in superspace and a choice of q (which is only 
determined up to a sign and up to a reciprocal- 
basic-lattice vector) such that (i) the matrices R, (ii) the 
elements e, (iii) the components of s, (iv) the values of r 
(3.8) of G are the same as the corresponding ones for 
the elements of G'. 

The equivalence principle being stronger than for 
space groups, nonequivalent superspace groups may be 
equivalent as four-dimensional space groups. This 
together with the fact that not all four-dimensional 
space groups may occur as superspace groups, is the 
reason why one cannot use here the list of four- 
dimensional space groups as given by Fast & Janssen 
(1968; only reducible ones) and by Brown, Billow, 
Neubfiser, Wondratschek & Zassenhaus (1978). The 
given equivalence principles are special cases of those 
given by Janner & Janssen (1979). 

Superspace groups are denoted by a two-line symbol. 
The upper line contains the Hermann-Mauguin sym- 
bol for the basic space group. Below each generator ge 
of this symbol the corresponding gl is indicated by the 
intrinsic parameters in the following way. If e = - 1 ,  
there is always an origin such that r vanishes. Then gl is 
indicated by 1. If e = + 1 the value of r is always one of 
the following: 

r = 0  ½ +_~ ___I ___~ 
(4.3) 

symbol I s  t q h. 

The basic lattice type is determined by the basic space 
group, whereas zero components of the vector qi follow 
from the group of pairs (R, 8). Since the super- 
space-group lattice is, according to (4.1-4.2), deter- 
mined by A and q, the only missing information is the 
vector qr" The symbol for this vector is a capital letter 
appearing as prefix to the Bravais-type symbol of the 
basic space group according to the following con- 
vention: 

qr = (000),, (,~)0),, (OJ20),, (00~,,  (100),, 
symbol P A B C L 

qr= (010),, (001),, (0~, ,  (~{),, (,~120),, (~0), 
symbol M N U V W R 

(4.4) 

As an example consider the group Lc2_mb_ The basic lsl" 
space group is C2mb. Choosing the origin as in 
International Tables for  X-ray Crystallography (1969), 
m r is associated with ½b. The (orthorhombic) space 

group has a lattice with conventional C-centred basis a, 
b, e. A primitive basis is, for example, ½a + ½b, - ½a + 
a b , c. The vector qi is along the e* [because only in this 
direction is (3.6) satisfied] and qr = (100). according to 
the prefix L. If we denote r by xa + yb + ze = (x,y, z), 
the transforms of ( x , y , z , t )  under the four basic 
translations are 

(x + ½,y + ½, z , t --½),  (x--½, y + ½, z , t  + ½), 

( x , y , z  + 1, t -  7), ( x , y , z , t  + 1). (4.5) 

The superspace-group symbol indicates that 2 x is 
combined with 8 = - 1  and mr with e = +1, r = ½. 
Hence, the corresponding transforms of (x,y,  z, t) are 

( x , - y , - z , - t ) ,  (x , - -y  + ½, z, t + ½). (4.6) 

In Table 2, all superspace groups for three-dimen- 
sional incommensurate structures with d = 1 are given. 
The groups are arranged according to the sequence 
number of their basic space groups in International 
Tables for  X-ray Crystallography (1969). The columns 
correspond to the Bravais types. In each row, the 
bottom line of the symbol is indicated by a number 
explained next to the symbol for the arithmetic crystal 
class. The superspace groups may be denoted either by 
the two-line symbol explained above or by a code 
consisting of three numbers: the first one is the number 
of the basic space group in International Tables for  
X-ray Crystallography, eventually with the addition of 
a letter to distinguish different settings; the second one 
is the number of the Bravais class (Table 1) and the 
third one indicates the bottom line as given in Table 2. 
As an example the group npm.2 can also be denoted as S i s  

28a.10.2. 

5. Extlnetion rules 

The diffraction vectors of a modulated crystal can be 
written as in (1.1). The basis a, b, e chosen there is not 
necessarily a primitive one. Satellites in one row or 
plane, as explained in § 1, are not assigned by (1.1) to 
the same main reflection if qr 4= 0. To avoid this it is 
convenient to choose another basis a s, bs, es in such a 
way that 

H = Ha* + Kb* + L¢* + mq t, H, K, L,  m integers, 

(5.1) 
which means that the components of qr with respect to 
this basis are integers. The basis as*, bs*, es can in most 
cases be obtained from a*, b*, e* by halving one or two 
of the basis vectors. Only in two cases (one tetragonal, 
the other trigonal) are the axes also rotated. 

On the other hand, one may express H always with 
respect to a primitive basis of A*: 

H = n I a* + n 2 a* + n 3 a~' + m a*, n I integer. 

(5.2) 
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Table  2. The superspace groups in (3 + 1) dimensions, describing incommensurate structures with a one- 
dimensional modulation 

The superspace groups are represented by digits arranged in columns. Above each column are given the Bravais class number (Table 1) 
and, as subheading, the arithmetic crystal class denoted by the symbol for its symmorphic superspace group. To the left of  this, a legend 
relates the digit to the superspace group bottom line. Each line begins with the basic space group (symbol top line) with (underlined) its 
number in International Tables for X-ray Crystallography (1969). If a group occurs as basic space group in more than one line, an 
additional letter is used for distinction (a, b, etc.). A - sign in a column does not necessarily mean that the corresponding superspace group 
does not exist. It may be equivalent to a group mentioned elsewhere in the table. Example: with basic space group Pc2m, no. 28, and 
Bravais lattice t),_pe no. 10, the bottom lines I 11 and s i s  occur for the setting (top line) Pma2, when qt is parallel to the 2 axis. Bottom 
lines I f i and s 11 occur for the setting Pm2a (ql normal to a). Bottom line 1 i i only occurs for the setting Pc2m (qt normal to m). The 
superspace group numbers are, respectively, 28a. 10.1/2, 28b. 10.1/2 and 28c. 10.1. 

Triclinic Monoclinie B (e unique) Or tho rhombic  P (cont.) Or tho rhombic  P (cont.) 

Bravais  class 1 Bravais class 4 Bravais class 9 10 I 1 Bravais class 9 

l : i  pe~ 
1:1 pe] 

5a. B2 1 
1: P1 1 

1 : I  
l : i  p e [  2 : s  PB7 

2. P i  1 8a. Bm 12 
- -  

9a. Bb 1 

Monoc l in i e  P (e unique) l : i l  

2 : i s  P ' f T  
Brava i sc l a s s  2 3 

1: i pe~ c'~ 

3a. P2 1 1 

4a_._. P2~ l - 

l : l  
2:s PeT cvT 

6a. Pm 12 1 

7a. Pb I 1 

1 : i 1 "  
C r t  2 : i s  pe~T ev= 

10a. P2/m 12 f 

l l a .  P2t /m 12 - 
13a. P2/b I 1 
14a. P2t /b  1 - 

Bravais  class 5 6 

I : 1  per  e2 
2 : s  A t 

3b. P2  12 1 

4b__. P2  t 1 1 

1 : i Pe 7 a e ~  

6b. Pm 1 1 

7b. Pb 1 1 

Bravais class  5 6 

l : l i  
2 :s i Per'~"- A ~ Vr m 

10b. P2/m 12 1 

lib.1 _. P2~/m 1 1 
13b. P2/b 12 1 

14b. P21/b 1 1 

28a. Pma2 1234 12 - 

29a. Pca2~ 14 1 - 

30a. Pcn2 12 1 - 

31a..___. Pmn21 12 12 - 

32a. Pba2 123 - 5 

33a_l .. Pbn2t 12 - 5 

34a. Pnn2 12 - 5 

l : l i i  
e m 2 m  P m 2 m  e m 2 m  

2 : s i i  P ~rr B t r r  W trr  

25b. Pm2m - 12 

28b. Pm2a - 12 

28c. Pe2m - 1 
12a. B2/m 12 
- -  32b. Pc2a - 1 
15a. B2/b l 

l : i l i  

2 : i s i  Pn'~'rtr B P ~ 7  W e ~ 7  
3 : i q i  

Bravais  class 7 8 

1:1 - -  ps~  m 
2 : s  B a 25c: P2mm 12 1 I 

26c__...= P2tam 12 I - 

5b__. B2 12 1 26d. P2~rna 12 1 - 

27b. P2aa 12 1 - 

1 : i pe,~ BB~ 28d_____. P2cm 1 1 1 
28e. P2mb 12 - - 

8b___. B m  1 1 29b__.__. P2~ca 1 1 - 
9b__. Bb 1 - 29c_..__: P2tab 12 - - 

30b. P2na I 1 - 

I : 1 [ 30c. P2an 12 - 3 
2 : s i  pe~r~ B~/r~ 31b-'~ P21nm 1 1 - 

_ _  31c. P2tmn 12 - - 

12b. B2/m 12 1 32c___: P2cb 1 - - 
15b. B2/b  12 - 33b___. P2~nb 1 - - 

33c___: P21cn 1 - - 
34b. P2nn 1 - 3 

O r t h o r h o m b i c  P 

Bravais  class 9 10 11 1 : 11 i 
2 : s l i  

1 : i i 1 e222 mm e222 3 : s s  i 
- -  B l l i"  2 : 11.~ P m B rh W rrt 4 : 1 s i peT,~7 . . . .  weTT7  

5 :qqi 
16. P222  12 1 I 

17a. P2221 1 I I 
17b___: P2 ,22  12 1 - 

18a_l • P2 t2 t2  12 - - 

18b___.= P2~22 t 1 1 - 

19___. P212t2 t I - - 

1:111 

2 : s i s  

3 : s s l  

4 :  Iss  
5 : q q l  

Prom2 Prom2 Prom2 
P t a t  B t t z  W l i t  

25a. Pmm2 123 12 1 

26a. Pmc2 t 12 12 1 
26b. Pcm21 - 1 - 
27a. Pcc2 12 1 1 

47. P m m m  123 12 I 
48. Pnnn 12 - 5 

49a. Pccm 12 1 1 
49b. Pmaa 1234 12 - 

50a. Pban 123 - 5 

50b. Pcna 12 1 - 

51a. Pmma 1234 12 - 

5 lb .  Pmam 1234 12 - 

51c. Pmcm 12 12 - 

51~ Pcmm - I 1 
52a. Pnna 12 - - 

52b. Pbnn 12 - 5 

52c. Pcnn 12 - - 

53a. Pmna 12 12 - 

53b. Penm 12 1 - 

53c. Pbmn 1234 - - 

54a. Pcca 12 1 

54b. Pcaa 14 1 

54c. Pbab 1234 - 

55a. Pbam 123 - 

55b. Pcma 14 1 

56a. Pccn 12 - 

56b. Pbnb 12 - 

57a. Pcam 14 1 
57b. Pmca 12 12 

57c. Pbma 1234 - 

58a. Pnnm 12 - 

58b. Pmnn 12 - 

59a. Pmmn 123 - 

59b. Pmnm 12 12 

60a. Pbcn 12 - 

60b. Pnca 12 - 

60c. Pbna 12 - 

61. Pbca 12 - 

62a. Pnma 14 - 

62b. Pbnm 12 - 

62c. Pmcn 12 - 

Or tho rhombic  I 

Bra~ais class 12 
I: i i l  
2 : i i s  e ' ~  

23. I 2 2 2  12 
24__. 12~212 ~ 1 

1:111 I m m 2  
2 : s l s  P t~t  

3 : s s l  
4 : l s l  

44a.  Imm2 123 

45a. lba2 123 

46a. Ima2 1234 

10 11 

44b. 12ram 12 

45b. I2cb 1 
46b. 12mb 12 

46c. I2cm 1 

1:111 
2 :s  I i P 'TT7 

3:ssi 
4 : l s i  

71. Immm 123 
72a. 1barn 123 

72b. lmcb 1234 
73. Ibea 123 

74a. Imma 123 

74b. l cmm 1234 

= =  

l : i l i  
2: is i P'~7 
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T a b l e  2 (cont.) 
Orthorhombic F Orthorhombic A (cont.) Tetra[~onal P (cont.) Tetragonal 1 (cont.) 

Bravais class 17 18 ' Bravais class 15 16 Bravais class 19 20 Bravais class 21 

l : i i l  
P F222 LF222 

2 : i i s  m m 

22. F222 12 I 

1:111 
2 : s l s  Fram2 Fmm2 
3 : s s l  P t la  L tt~ 

42a. Fmm2 123 123 
43a. Fdd2 123 - 

l : i l i  
L t t r  38b. l : i s i  p ~ , ~  . . . .  

- 39b. 

42b. F2mm 12 12 40b. 
43b. F2dd 12 - 4lb.  

l : l l i  
2 : s l i  
3 : s s i  e ~ 7  LF777 

38c. 
69. Frnmm 123 123 39c. 
70. Fddd 123 - 40c. 

41c. 

Orthorhombic C 

Bravais class 13 14 

1:111 
/ ~ 2 _ 2 _ 2  L C 2 2 _ 2  

2 : i i s  - - m  - n ,  

20a. C222, 1 1 
21a. C222 12 12 

1:111 
2 : s l s  
3:ss 1 P~771 LC77] 

35a. Cmm2 123 123 
36a. Cmc2~ 12 12 
37a. Ccc2 12 12 

l : i l i  
L I l I  2 : i s i  / ,cI77 CU, r, 

38a. C2mm 12 12 
39a. C2mb 12 12 
40a. C2cm 1 1 
41a. C2cb 1 1 

l : l l i  
2 : s l i  

L l~r  3 :ss i P~777 ~"""  

63a. Cmcm 12 12 
64a. Cmca 12 12 
65a. Cmmm 123 123 
66a. Cccm 12 12 
67a. Cmma 12 12 
68a. Ccca 12 12 

Orthorhombic A 

Bravais class 15 16 

l : i i l  A222 A222 
2 : i i s  P m A rn 

20b. A2122 12 - 
2lb. A222 12 1 

1 : i 1 i A2mm A2mm 93. P4222 12 12 82. lzl I 
2 : i S i  P rat  A r~I 94--. P422,2 12 - - -  

95__. P4322 1 1 1 : 1 i 
35b. A2mm 12 12 96__. P432~2 1 - 2 : s i  pt~/,~ 
36b. A2~am 12 - 
36c. A2tma 12 - 
37b. A2aa 12 - 

1:111 87. 14/m 12 
2 :ss 1 88. 14/a 1 P4mm 

== 3 : l s s  P~77 w ,,, 
1:111 4 : s i s  l : l i l  
2 : s i s  5 :qq l  2 : q i i  p t ~  

3 : s s l  Am,n2 Atom2 6:qqs 3 : s i i  
4 : l s s  P l l l  A t ~  

Atom2 1234 14 
Abm2 1234 14 
Ama2 1234 - 
Aba2 1234 - 

l : l i i  
P Am2m A d m 2 m  

2 : s i i  , i i  , r r  
- - - -  

Am2m 12 1 
Ac2m 12 1 
Am2a 12 - 
Ac2a 12 - 

l : l l i  
2 : s l i  
3 : s s i  
4 : l s i  

PA777 aA777 

63b. Amam 1234 - 
63c. Amma 1234 - 
64b. Abma 1234 - 
64c. Acam 1234 - 
65b. Ammm 1234 14 
66b. Amaa 1234 - 
67b. Acmm 1234 14 
68b. Acaa 1234 - 

Tetra~onal P 

Bravais class 19 20 

1:1 
2 : q Pe~ W'~ 
3 : s  

75. P4 123 12 
76_..:_. P4 t 1 1 
77. P42 12 12 
78_._:_. P43 1 1 

81. P~, 1 1 

l : l i  
2 : s i  
3 : q i  

P4/m P4/m 
P i t  W , I  

83. P4/m 12 1 
84__= P42/m 1 1 
85. P4/n 12 3 
86__=. P42/n 1 3 

l : l i i  
2 : q i i P422 P422 P trr W fir . _  

3 : s l l  

89. P422 123 12 
90. P42t2 123 - 
91. P4122 1 1 
92__. P4,2t2 1 - 

99. P4mm 1234 13 97. 1422 123 
100. P4bm 1234 56 98. 14~22 12 
I01. P42cm 13 13 
102. P42nm 13 56 1 : 111 
103. P4cc 12 1 2 : s s l  
104. P4nc 12 5 3 : I s s  
- -  14ram 
105_.__. P42mc 12 1 4 : s l s  P '~ ' 
106. P42bc 12 5 

= =  107. 14mm 1234 
1 : i i I p~2,~ Wp~2m 108. 14cm 1234 
2 : i i s  P ~ '  " "~ 109. 14~md 12 

110. 14~cd 12 
111. 
112. 
113. 
114. 

P42m 12 12 
P42c 1 1 l : i l i  

14m2 
P42tm 12 - 2 : i s i  P h r  
P42ff 1 - 

l : i l i  P~m2 w P ~ m 2  
2 : i s i  V i , r  r , r  

115. P4m2 12 1 
116. P4c2 1 1 
117. P4b2 12 I 
118. P4n2 1 I 

I :1  i l l  
2 : s  i s l  
3 : l i s s  
4 : s  i l s  
5 :q  iq l  
6 : q  iqs 

P4/mmm P4/mmm 
P 1 ia~ W t r t ,  

123. P4/mmm 1234 13 
124. P4/mcc 12 1 
125. P4/nbm 1234 56 
126. P4/nnc 12 5 
127. P4/mbm 1234 - 
128. P4/mnc 12 - 
129. P4/nmm 1234 - 
130. P4/ncc 12 - 
131.._.__. P42/mmc 12 1 
132. P42/mcm 13 13 
133. P42/nbc 12 5 
134. P42/nnm 13 56 
135. P42/mbc 12 - 
136. P42/mnm 13 - 
137. P4Jnmc 12 - 
138. P42/ncm 13 - 

Tetragonal 1 

Bravais class 21 

1 : I  

2 :q /4 
3 : s  P t  

79. 14 123 
80. 14t 12 

l :  i Pt l  

= = 119. 14m2 12 
120. 14c2 I 

l : i i l  
2 : i i s  P'~r~ 

121. 142m 12 
122. 142d 1 

1:1 i l l  
2 : s  i s l  
3:1 lss 

14/mmm 
4 : s  i l s  P , i , 1  

139. 14/mmm 1234 
140. 14/mcm 1234 
141. 14,/amd 12 
142_..__. 14Jacd 12 

Tr isonalR 

Bravaisclass 22 

1:I  
2 : t ~3rR 

146. R3 12 

l : i  pR~ 

148. R3 1 

1:11 
2 : t i  P~"~ 

155. R32 12 

I :11 
2 : I s Ps317 

- -  

160. R3m 12 
161. R3e 1 

= 

1:11 
2: is PRI7 
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Trigonal R (cont.) 

Bravais class 22 

166. R3m 12 
167. R3c 1 

Trigonal P 

Bravais class 23 24 

1:1 
2 : /  RV~ pv~ 

143. P3 1 12 
144___. P3~ 1 1 
145__. P32 1 1 

= =  

_ _  

147. P3 1 I 

1:111 P312 pP312 
2 : t l [  R . i  - ttr 

149. P312 1 12 
151. P3~12 1 1 
153. P3212 i 1 

1:1[1 t~l p32t p321 
2 : t i l  "" trx P th 

(cont.) 
Trigonal P (cont.) Hexagonal P (cont.) 
Bravais class 23 24 Bravais class 24 

1:111 Rp3ml e3mt 168. P6 1234 
2 : l s l  - l i t  P I l l  169__. P6, 1 

170_. P6~ 1 
156. P3ml  - 12 171...__. P62 12 
158. P3cl  - I 172. P64 12 

173____. P63 12 
I : I 1 1  P31m ~P31m 
2 : l l s  R . t  - ~tl 

157. P31m 12 12 
159. P31c i 1 

Table 2 

1:111 l~ P~lm DpJlra 
2 : l l s  "" nx - rxl 

162. P31m 12 12 
163. P31c 1 I 

l : i l l  ~pJrnl pJml 
2 : l s l  " "  l i t  P h i  

_ _  

164. P3rnl - 12 
165. P3cl  - 1 

Hexagonal P 

Bravais class 24 

I :1  
150_.__. P321 - 12 2 : h  
152.___. P3~21 - 1 3 :t 
154____. P3221 - 1 4 : s  pv~ 

1: i P'~ 
-- 

174. P6 1 

= =  

l : l i  l~p6/ra 
2 : s i  - , r 

_ 

175. P6/m 12 
176. P63/m 1 

l:lii P622 
2 : h i i  P trr 
3 : t i i  
4 : s i i  

177. P622 1234 
178. P6~22 1 
179___. P6~22 1 
180_.__. P6222 12 
181...___. P6422 12 
182..__. P6322 12 

1:111 v6mm 
2 : s s l  P 11~ 

Hexa$onal P (cont.) 

Bravais class 24 

3 : l s s  
4 : s l s  

183. P6mm 1234 
184. P6cc 14 
185.__.. P63cm 13 
186_._. P63mc 13 

l : i l i  l~P~m2 
2 : i s i  - ~tr 

187. P6m2 12 
188. P6c2 1 

I:iil pp&~n 
2 : i i s  - rn  

189. P62m 12 
190. P62c 1 

1:1 i l l  
2 : s  i s l  
3:1 l ss  p6/mmra 
4 : s  i l s  P t rtt 

191. P 6 / m m m  1234 
192. P6/mcc 14 
193. P63/rncm 13 
194. P63/mmc 13 

The basis a x, a2, a 3 may be expressed in the basis a s, b s, 
es as follows: 

a 1 = a l l  a s + $ 2 1  bs + $31 es 

a2 = S12 as + $22 bs + S 3 2  Cs ( 5 . 3 )  

a 3 = S 1 3  a s + $ 2 3  bs + $ 3 3  c s .  

Then one can write the integer coefficients nt in terms of  
H, K, L, m. This puts restrictions on the indices H, K, 
L, m which depend on the Bravais class. Conversely, 
the Bravais class may be determined from systematic 
extinctions among the indices. 

As an example, we consider the Bravais class l',Fmram 111" 
Then a*, b*, e* span an orthogonal lattice and qr = 
(100) ,  has already integer components. Hence, 
{a s, b s, e s } is the same as {a, b, e}, which is related to a 
primitive basis via the matrix 

S =  1 0 ½ . 

½ 0 
(5.4) 

Comparing (5.1) with (1.1), one gets the relations 

Moreover, the centring matrix S (5.4) gives the relation 
with the n{s. Hence, 

K + L  H + L - - m  
nl - - - ,  n2 = 

2 2 

H + K - m  
n3 = (5.6) 

2 

These are integers if and only if 

K + L = 2 n ,  H + L + m = 2 n '  (n, n' integers). 

(5.7) 

On the other hand, if the spots can be described by 
(5.1) with a* * * = s, bs, es an orthogonal basis, with qt 7e* 
and such that (5.7) is satisfied, then one may conclude 
that the modulated crystal belongs to the Bravais class 
Lvmm'~. As a second example, consider the Bravais class 
W ~ ' ~ ' ~ .  Here a*, b*, e* span a tetragonal lattice and 

I I  qr = (½30),- The vectors H are in the form (5.1) if one 
introduces the tetragonal basis a s = a + b, b s = b - a, 
e s = e. Then 

H - - K - - m  H + K - - m  
n I = , n2 -- , 

2 2 

H = h + m ,  K = k ,  L = l .  (5.5) n 3 = L .  (5.8) 
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Table 3. Special conditions due to the translation parts o f  symmetry operations 

First column: reflections to which the conditions apply and orientation of the symmetry element. Second column: conditions and the 
corresponding symmetry operation. For the classes 11, 20 and 23 the deviating conditions are given as footnotes to the Table. Just as in 
Table 1, the conventional basis is chosen for a, b, e. 

Planar monoclinic (e unique) 

00~0 o , ~ ( ~ )  
.~0~  o ~ n  (~) m ~ °  (m) 

Axial monoclinic/orthorhombic/tetragonal (~ along e) 

OOLm e L=2n (~1) m=2n: (2s) 

H000 a H =  2n: ( 21i ) 

OKLm a'~. 

Tetragonal 

OOLm e 

HHLm a -  b:~ 

Trigonal/hexagonal 

OOLm e 

OKLm a§ 

HHLm a--b 

m=2n: (7) L+m=2n: (~) 

L=2n:  ( 42 ) L=4n:  ( 41 ) 

m=2n:  (4) m=4n: (4)q 

L=2n:  (~)  rn = 2n: (m) 

L=2n:  (~3) m=2n: (6s) 

L=6n:  (~ 1) 2L+m=6n: (62) 

rn=6n: (~)  3 L + m = 6 n : ( ~  3) 

L=2n:  (~) m=2n: ( 7 )  

L=2n:  (1) m=2n: (7 )  

-+,,--~." (7) 
H +  K= 4n: (d)  

K + L + m= 2n: ( ns ) 

K + L = 4 n :  (dl) 

,,+ ~+ ~m--4." (~) 

2L+m=4n:  (4q 2) 

L = 3n: 

m = 3n: 

L +m= 2n: 

L + m = 2n: 

(~,) (? ~ ) 
(3) (6/) 

(:) 
(:) 

Bravais class 11 

OKLm a 

HKO0 e 

:I: Bravais class 20 

OKLm a - b 

HHLm a 

§ Bravais class 23 

OKLm 2a - b 

~ (~) 
m= 2n: (m) 

K + m = 4 n :  (bq) 

H + K = 4 n :  (1 )  

m= 2n: ( 7 )  

L + m = 2 n  (~) 

m=2.  (m) 

K+2L+m=4.  (q) 

(b) 2H + m = 4n: q 

2H+2L+m=4n: (q)  



P. M. DE WOLFF,  T. JANSSEN AND A. JANNER 635 

Hence there are systematic extinctions for H + K + m 
odd. The conditions for the 24 Bravais classes are given 
in Table 1. 

Next to these general conditions, there are special 
ones due to the translational parts of symmetry 
operations. If f ( H )  is the Fourier transform of the 
(electron) density function of an incommensurate 
structure which is invariant under the transformation 
(3.1-3.2), one has the following relation for H given by 
(5.1): 

f ( H )  = f ( g H ) e x p  { 2 n i [ R n . s  + c r n ( c J - q . s ) ]  }. 

(5.9) 
This simply expresses the invariance in reciprocal 
space. So, if RH = H and c = +1, a condition for 
nonvanishing Fourier components is 

H. s + m(~i-- q. s) = n, n integer. (5.10) 

The translation s may be expressed in components with 
reference to a s, b s, es: 

s = x a  s + y b  s + z e  s. (5.11) 

Then (5.10) can be expressed in terms of r (3.8)" 

H x  + K y  + L z  + m r  = n, (5.12) 

which is no longer explicitly dependent on the Bravais 
type. The symbol for the superspace group contains 
information about those x, y, z and r values which 
cannot be transformed to zero by a change of origin. 

As an example we take the superspace group WPabm 
" "  q q  1 

which contains an element (~) with 

:~(a s + 1 R = m  x, e = l ,  s = ½ b =  1 bs), r = ~ .  

(5.13) 

The vector H (5.1) is left invariant if H = K. Then the 
spots are only nonvanishing if (5.12) is satisfied: 

H + K + m  
= n .  (5.14) 

4 

So the condition for the diffraction spots corres- 
ponding to the existence of the symmetry element 
(5.13) is H + K + m = 4n. This and the other 
conditions due to nonprimitive translations are given in 
Table 3. 

6. Determination 

To determine the complete list of superspace groups, we 
have used two independent methods. Both start with the 
determination of the Bravais types: for each three- 
dimensional crystallographic point group it is checked if 
there is an incommensurate vector q satisfying (3.4) for 
all group elements combined with a factor c. Since basic 
lattice and vector q determine the lattice in R 4, the 
Bravais types are then found using the definitions from 

§ 4. In the first method, for each holohedral point group 
the nonequivalent subgroups are determined, yielding 
the arithmetic crystal classes. The superspace groups 
are extensions in the group-theoretical sense of the point 
group with a four-dimensional translation group. For 
one representative point group from each arithmetic 
crystal class all nonequivalent superspace groups are 
then found with an algorithm developed for n-dimen- 
sional space groups. The same algorithm has been used 
by Fast & Janssen (1968). The difference between this 
work and that of Fast & Janssen is that here only a part 
of all point groups describe incommensurate structures 
and one has to implement another (stronger) equiva- 
lence criterion. 

The second method uses the fact that each super- 
space group is isomorphic - modulo integer increments 
of t - with its basic space group. Hence, it can be 
formed, like the latter, by a synthesis running parallel to 
the well-known construction of point groups through 
subsequent enlargement of the set of generators. For 
instance, 

point groups 

space groups 

International Tables for 
X-ray Crystallography 
number 

superspace groups 

added added 

4 (m) 4/rn (m) 4/mmm 

P4 (n) P4/n (m) P4/nbm 

75 85 125 

Such pedigrees fulfil the condition that the added 
element transforms into itself the group to which it is 
added. A superspace group is determined completely by 
the basic space group, one element with c = - 1  and all 
the other ones with c = + 1 (that is, those which do not 
invert qi). It is sufficient to find the values of ~ for the 
latter elements only, as indicated above by a question 
mark, because the r of the chosen element with e = - 1  
can always be taken as zero. The question marks can 
be filled in by checking the above condition for the t 
part of the relevant operations g = (R, c, s, r), using the 
following relations: 

if gl g2 (r, t) = g3(r, t): Ca = el t;2, z'3 - -  r i  + el Z'2 (6.1) 

if g~-X gl g2( r, t) = g~(r, t): e~ = el, 

Z'] ----- e 2 ~'l + e 2 ( e l -  1)~'2" (6.2) 

In the transformation (6.2), only the case e I = + 1 is 
needed; then 

r~ = c2 rl. (6.3) 

In the above example, the group P4 has two inequiva- 
lent axes. A rotation (R l) of ~r/2 around one axis, 
multiplied by a translation (s 2) along a yields a rr/2 
rotation (R 3) about the other axis. Since in the Bravais 
class no. 20 (Wp4/mrnm'~ the vector q is of the form 

x ' '  1 l l l  j '  
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11 1 (5~7)., the translation a has a t part r2 = 3. 
Accordingly, (6.1) with g~ ---- (RI, 61 = 1, s = 0, r I = 9.) 
and g2 = (1, 1, a, z 2 = ~) gives 

z3 = ~'1 "1- 5"  (6.4) 

Since gl is of order 4, the possible r 1 values are 0, ¼ or 5 
1 1 and we have (rl, r3) = (0, 5), (5, 0) or (~,-~).  The first 

two are equivalent (superspace group 75.20.1), the last 
is 75.20.2. 

Adding the n mirror with e = - 1 ,  we note that it 
transforms gl and g3 into each other. By (6.3), this 
requires ~'3 = --'t'l' which rules out the (0,5) case, 
leaving only (¼,-¼): 85.20.3. Finally, a mirror plane 
parallel to the fourfold axes is added to obtain no. 125, 
for instance the diagonal m plane. From the spatial 
configuration (m lies between the axes) it follows that m 
transforms gl into g~l. According to (6.3) this gives z 3 
= - r~  = - r  1, which agrees with the former result 
independently of the r assigned to m. Hence, z can be 
either 0 (125.20.5) or 5 (125.20.6). Since the mirror b in 
P4/nbm is the product of m and ga, (6.1) yields z = + ¼ 
for b, so the complete pedigree becomes: 

space group P4 P4/n P4/nbm 

possible superspace groups W e4 
P4/n WP4/nbm " .. qWP4"--~W q - l ~ ' "  q]ql 

WP4/nbm 
q lqs 

Of course, different lines of ascendence are possible, 
such as P4 - P4bm - P4/nbm, to arrive at no. 125, 
which is in the most complicated arithmetic class of all; 
the derivation of the majority of superspace groups is 
simpler than in the above example. 
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Abstract 

A formula has been derived for the mean-square error 
in the phases of crystal reflections determined through 
the multiwavelength anomalous scattering method. The 
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error is written in terms of a simple function of the 
positions in the complex plane of the 'centres' corres- 
ponding to the different wavelengths. For the case of 
three centres, the mean-square error is inversely 
proportional to the area of the triangle formed by them. 
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