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Abstract

A complete list of (3 + 1)-dimensional superspace
groups is presented. These groups describe the sym-
metry of incommensurate crystal structures with a
one-dimensional modulation. A short discussion is
given of applications. Extinction rules and Bravais
types are tabulated in order to facilitate the deter-
mination of the superspace-group symmetry.

1. Introduction

This paper deals with crystals giving sharp diffraction
spots in a pattern which requires not three, but four,
basis vectors in reciprocal space. Hence, a diffraction
vector H can be written as

H = ha* + kb* + [¢* + mq, h,k, I, mintegers,

(1.1)

while the coefficients a, f and yin

q =aa* + gb* + yc* (1.2)

are not all fixed rational numbers. (The convention
adopted hereis a.a* = 1 etc.)

Such crystals represent the case d = 1 among the
larger set of ‘incommensurate structures’, requiring 3 +
d reciprocal basis vectors, ¢f. Janner & Janssen (1977).
The cases d = 2 and d = 3 are known to occur in nature
as well, but they are less frequent than the case of
‘one-dimensional modulation’ (d = 1) considered here.

For these structures there is no three-dimensional
space-group symmetry, but an extended symmetry
concept, as explained below, restores the characteristic
of crystals: a lattice of symmetry translations. In
correspondence with (1.1), such a lattice requires four
basis vectors. By setting a*, b* and ¢* apart from q in
(1.1), we imply that the lattice A* spanned by these
vectors is reciprocal to the ‘basic lattice’ 4. The latter is
chosen so as to express the periodicity of a relevant
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approximation to the real structure. A is determined to
a large extent by the point symmetry of the diffraction
spots in reciprocal space. If that diffraction aspect is
hexagonal, tetragonal, trigonal or orthorhombic, all
spots lie on an array of lines parallel to the main axis
(for orthorhombic, one of the binary axes). In direct
space, this corresponds to a two-dimensional net of
symmetry translations in the usual sense. Hence, the
incommensurability refers only to the sequence of spots
on the lines just mentioned, the direction of which will
be termed the ¢* direction throughout. The magnitude
of ¢* (and thus of ¢) is not defined, though there are not
more than two essentially different choices. For the
monoclinic case: either there is an array as above (‘axial
monoclinic’) or all spots lie in equidistant planes parallel
to the mirror plane (‘planar monoclinic’). In the latter
case there is a true symmetry translation ¢ along the
binary axis. Though this leaves a much wider choice for
the basic lattice than in the former case, there are again
just two alternatives differing essentially from the
symmetry point of view. If the diffraction aspect is
triclinic there is not necessarily a concentration of
spots. The basic lattice is not restricted geometrically
but the symmetry is utterly trivial anyhow.

In any case the basic lattice is not completely
determined by the geometry of the diffraction spots and
a choice must be made. In that respect, two classes of
structures can be distinguished.

(i) There is a conspicuous set of strong ‘main
reflections’, situated on nodes of a lattice 4 *, which can
be made to correspond to m = 0 in (1.1). The vector q
is essentially determined by the remaining reflections
called satellites which have m # 0. Their intensity
vanishes rapidly for increasing values of {ml. The basic
lattice is clearly indicated as the one of which A* forms
the reciprocal lattice. The structure can be described by
periodic distortions of a normal crystal structure, the
so-called basic structure. This is the class studied by de
Wolff (1974) [referred to as (I)].
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(i) In reciprocal space, there is no unique lattice of
striking main reflections accompanied by satellites. In
the cases published so far, it has been found that the
structures can be obtained again by periodic distor-
tions, this time of a ‘composite basic structure’. The
latter consists of two or more interpenetrating normal
crystal structures which are mutually incommensurate.
Class (ii) was studied by Janner & Janssen (1980b)
[indicated here as (IT)].

Surprisingly, the symmetry of class (ii) structures can
be described by exactly the same groups which express
the symmetry of class (i) crystals. This can be
understood by looking at Fig. 1, which illustrates the
classes (i) and (ii) for the case of one-dimensional
modulation of a one-dimensional crystal. Here we use
the result (I) that, for d = 1, an incommensurate crystal
in n-dimensional position space can be seen as the
intersection of that space with an (n + 1)-dimensional
crystal, the so-called supercrystal. Hence our incom-
mensurate (n = 1) crystal appears on a line L
intersecting a planar, two-dimensionally periodic struc-
ture. The crystal is incommensurate provided that L is
not parallel to a net line of the planar translation net.
The supercrystal consists of a pattern of lines with an
oscillating density and/or direction but with a well-
defined average direction. There is a distinct line for
each atom of the crystal. The atomic positions coincide
with the intersections of L with these lines.

In the class (i) structures, Fig. 1(a) and (b), these
lines have just one average direction which is parallel to
net lines of the translation net of the planar structure.
Clearly the spacing between these net lines, measured
on L, is the period of the one-dimensional basic lattice.

In the class (ii) structure of Fig. 1(¢), however, the
lines representing atoms have different average direc-
tions, each again parallel to a net line. The two
corresponding net-line spacings, measured on L, are
equally plausible periods for the basic lattice. From a
structural standpoint, class (ii) may seem unacceptable
since it leads to overlapping atoms in L. However, in
higher dimensions (n = 2 or 3), it is easy to conceive of
configurations free from overlap, as they do indeed
occur for the compounds mentioned in (I) as well as
for certain surface structures, ¢f. Janssen, Janner & de
Wolff (1980).

The symmetry correspondence between the two
classes can now be exemplified for linear crystals. As
shown in (I), all symmetry operations of the planar
structure which map the line L into a line parallel to it
are relevant for the linear one. These are symmetry
translations and, possibly, inversion. Hence structures
in both classes can have a symmetry based on either p1
or pl for the planar supercrystal. Of course, less trivial
and more numerous groups are involved in describing
the symmetry of three-dimensional incommensurate
crystals — but there, too, each can occur for structures
in class (i) as well as in class (ii).

THE SUPERSPACE GROUPS FOR INCOMMENSURATE CRYSTAL STRUCTURES

The present tabulation uses the basic lattice as a
given reference system. It is therefore particularly suited
to class (i) structures. On the other hand, it follows
from the above conclusion that no possible symmetry
group is excluded by our approach. Moreover, in all
class (ii) structures we know at present, one of the

Fig. 1. Incommensurate one dimensional crystal structures with d
= 1. For each case a unit cell of the two-dimensional supercrystal
(shaded) and the period a of the basic lattice are shown. Atoms
of two different kinds are indicated by full and open circles. (a)
Class (i), displacive; (b) class (i), substitutional, as shown by
varying dash length and circle size; (c) class (ii), displacive, with
two equally plausible periods a, and a,.
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subsystems is distinguished as a host structure in the
channels of which the other(s) are embedded. Then its
basic lattice is the obvious choice for any description
and is the best starting point for the classification here
as well.

The basic lattice should not be associated too closely
with the basic structure mentioned before. The latter is
merely a zero-order approximation of the actual
structure. It is not generally definable in an exact
manner. A composite basic structure does not even
possess a three-dimensional lattice of symmetry trans-
lations. In symmetry considerations the concept of a
basic structure is not needed though it will be
convenient to express symmetry operations in terms of
such a concept.

2. Superspace groups

Symmetry operations can be described analytically (cf.
§ 3), but their principal features can be understood from
Fig. 1. There we observe that any vector of the basic
lattice in L becomes an extended symmetry translation
vector if supplemented by a parallel shift of L, such that
the resulting translation is a symmetry operation of the
planar supercrystal. Similarly, if the supercrystal has
inversion centres, each of these yields a symmetry
operation on L provided that L is brought to the
corresponding inverted position. In both cases, the
supplementary operation (shift and/or inversion of the
line L in the supercrystal) can be expressed as an
operation on a coordinate t. This extra coordinate
measures the position of L, from an arbitrary origin, in
the direction of the net lines defining the basic lattice on
L as discussed before. The ¢ scale is determined by
requiring that a shift 4¢ = 1 corresponds to a
supercrystal period in the direction of those net lines
(the r-axis direction).

The variable ¢ expresses an extra degree of freedom,

which can be visualized for class (i) crystals (especially
displacive cases like those of Fig. 1a) as the movement
of a wave through the crystal, but which is quite
generally valid. In the case of d-dimensional modula-
tion of a three-dimensional crystal, there are d extra
_degrees of freedom. They are comparable with the
translational movements of a normal crystal in R,.
With these extra dimension(s), an appropriate new kind
of symmetry operation (g, g,) can be defined, where g
is an element of a normal space group G in R, (the
‘external’ or ‘positional’ space) while g, acts on d
coordinates in the ‘internal’ space based on the extra
dimension(s). The group G; is called the basic space
group. Often it is also the space group of the basic
structure. The translations contained in G are those of
the basic lattice.

The group formed by all operations (gg,g;) which
leave the supercrystal, corresponding to an incom-
mensurate structure, invariant will be called its super-
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space group. The appropriate form of g, and g, was
worked out for the case d = 1 by de Wolff (1974,
1977), whereas Janner & Janssen (1977, 1979) have
extended the theory to the general case. This work has
been applied in various examples of symmetry classi-
fication by Bak & Janssen (1978) and Janner &
Janssen (1980a,b). It has also led to several appli-
cations in structure analysis (van Aalst, Den Hollander,
Peterse & de Wolff, 1976; Valentine, Cavin & Yakel,
1977; Yamamoto, Nakazawa & Tokonami, 1979) and
to a theory on the dynamics of incommensurate
crystals by Janssen (1979).

With a view to these and similar kinds of appli-
cation, the authors have undertaken the derivation and
complete listing of all superspace groups for the case d
= 1. For two-dimensional incommensurate structures
(n = 2), the relevant groups have been listed for both d
= 1 and d = 2 by Janssen, Janner & de Wolff (1980).
The list of Bravais types for d = 1 has been given by
Janner, Janssen & de Wolff (1979).

A list of systematic extinctions is also given, so as to
enable the user to identify the possible superspace
group(s) for a given diffraction pattern.

The group tables follow the pattern of International
Tables for X-ray Crystallography (1969). With the
extended symbols, it should not be difficult to complete
the g, operations from those tables with the corres-
ponding g; ones in the form suited to the case at hand
(that is, in terms of displacements, occupation densities
or otherwise) by the rules given in §§ 3 and 4. Thus, a
foundation is established for the calculation of struc-
ture factors or other structure-dependent quantities.

3. Symmetry operations

For incommensurate crystal structures with d = 1,
locally defined quantities like the electron density p
correspond to quantities (5) which do not merely
depend on position r but also on ¢ such that j(r, t = 0)
= p(r). In the one-dimensional situation of Fig. 1, j
would correspond to a two-dimensional periodic func-
tion in the plane of that figure, while p is the value of
that function on the line L (which corresponds to a
constant value of £). A symmetry operation can be
defined in terms of 5 as follows. A combination of g;: ¢
- r’ and g;: ¢t - ¢ is a symmetry operation if for all
r, £: p(r’', t") = p(r, t). It has the form
r=Rr+s

3.1

=¢t+9d—q.s. 3.2)

(Another way of expressing a symmetry operation, in
terms of, for example, atomic positions and displace-
ments, is given in the second half of this section.) Here
R, the homogeneous part of the normal space-group
operation gz, is a point-group operation; hence the
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translation s can be split into an intrinsic part s, and a
part s, which depends on the choice of origin:

S=S§, + §,. 3.3)

The intrinsic part, s,, is left invariant by R and is 1/n of
the translation g3 when R is of order n. This part is
non-zero only for translations (R = 1, s, = translation
vector) and for screw or glide operations. In (3.2), ¢ =
+1 and J is a parameter which is an integer for all
translations.

The combinations (R, ¢) are restricted by the relation
. (de Wolff, 1977)

£q — Rq = n*, (3.4)

where n* is a vector of the reciprocal of the basic
lattice. On the other hand, (3.4) is a restriction on q as
well. This can be stated in terms of its (mutually
perpendicular) components q; and q, such that

q9=q; + q,. 3.5)

The vector q; is the component of q in the subspace left
invariant by &R for all pairs (R,g) occurring in
symmetry operations (3.1-3.2):

eq;—Rq,=0. (3.6)

For the systems yielding diffraction spots on lines or
planes in reciprocal space (c¢f. Introduction), q, is
parallel to these lines or planes, while q, is, if non-zero,
normal to them. In the triclinic case, q, = 0. The
coordinates of q, (with respect to a basis of A*) are
simple rational fractions, whereas those of q; are, in
general, irrational.

In terms of the components of s and q introduced
above, (3.2) becomes

3.7

The last term q;.s, is merely a correction needed if the
origin is not situated on the symmetry element; it
vanishes identically for ¢ = +1. The term q;.s, is the
intrinsic irrational change in ¢, since it is independent of
the origin. Similarly, the term

t'=¢t+(6—q,.8)—q;.8 — q;.S,.

(3.8)

can be called the intrinsic rational increment in # This 7
is invariant under a change of origin if ¢ = +1.
(Strictly speaking for elements with ¢ = —1, 7 is rational
only for a suitable zero point on the ¢ scale.) It is the
most convenient parameter for characterizing g, in
superspace-group symbols as well as for extinctions.
The transformation of a distortion wave under the
action of the superspace-group element (3.1-3.2) will
now be described, firstly for the modulation of a scalar
quantity. Consider a modulation of the occupation
probability p; for the ith atom (i = 1,.., N if there are N
atoms in the unit cell) of the basic structure. This
function may, for example, describe the distribution of

1=0—4q,.§

THE SUPERSPACE GROUPS FOR INCOMMENSURATE CRYSTAL STRUCTURES

atoms over two different positions [see Janner &
Janssen (1980a), § 7]. Such modulated quantities are
periodic functions of q.r% + ¢, where 1%, is the position
of the ith atom in the unit cell given by the basic lattice
vector n. If r? denotes its position within the unit cell,
one has

,=n+r1

3.9

The occupation probability for the atom in the position
0
rd; is

p=pq.15 + 0. (3.10)
The function p(x) is periodic:
pi(x + 1) = p;(x). (3.11)

If the operation (3.1) transforms the positions in such a
way that

(3.12)

(where i and j denote atoms of the same chemical kind),
the corresponding symmetry condition for p is

0 — Rf?
Ty = Rry + 8

(3.13)

if the reciprocal-lattice vector m* is given by m* = ¢q —
R 1lq.

The symmetry condition can also be formulated
independently of the specific atom positions, but then
one needs a cell-dependent function p,,; defined by

pi(x)= ple(x — d + m*.rd)]

Pni(Q; 1 + )= pi(q.1% + ). (3.14)
Then (3.13) is equivalent to
Py (X) = pyle(x—1)). (3.15)

Similarly, the symmetry condition for a vector
function, such as the displacement vector field u; of the
ith kind of atom in a displacively modulated crystal is

u;(x) = Rule(x — 6 + m*.r)]. (3.16)

Now consider the case of composite crystals in class
(i), consisting of a number of interpenetrating mutually
incommensurate subsystems like the iodine and TTF
subsystems in TTF,I; (Johnson & Watson 1976). The
subsystems are labelled by the index v. Each of them is
supposed to be a somewhat distorted normal crystal
structure, and is described with reference to the lattice
of symmetry translations of its own basic structure with
basis vectors a,;, a,, a,3. Usually, one of these lattices
will serve as the basic lattice for the whole structure.
Anyhow, the reciprocal-lattice vectors for each sub-
system are possible diffraction vectors. This means that
the reciprocal basis vectors of the vth subsystem can be
expressed as in (1.1):

k=1,2,3,
(3.17)

Z?%, being integer coefficients. Now the position of the ith
atom (i = 1,.., N if there are N, subsystem atoms in

al=Zy a*+ Z5,b*+ Z4e* + Z3, q,
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their corresponding unit cell) in the unit cell n, of the
vth subsystem is given by

3
0 __ 0 v
=N, +r1,—t 3> Zta,,
k=1

(3.18)

where {a,} (k = 1, 2, 3) is the basis reciprocal to
(3.17). So the positions depend linearly on ¢, except of
course in the subsystem yielding the basic lattice (Z}, =
0). If (3.1-3.2) is a symmetry transformation, then the
position of the atom labelled by nvi is transformed
according to

3
1, =Rm,+r%)+s—e(t—J+q.s) k§12;4 Ra,.

(3.19)
Conversely, if for every atom labelled by nvi there is
another one of the same chemical kind labelled by mu,
such that (3.19) holds, then the corresponding trans-
formation (3.1-3.2) is a symmetry operation for the
composite basic structure. (In the TTF,I, example y =
v, but this is not necessarily so.) In addition, there will,
in general, exist an interaction between the subsystems
leading to displacive modulation. For the ensuing
displacements the transformation (3.16) is valid.

4. Bravais types, equivalence criteria and nomenclature

Since the transformations (3.1-3.2) define an operator
in (r,?) space, superspace groups for d = 1 are in fact
four-dimensional space groups. However, not every
four-dimensional space group is a superspace group.
The separation of each operation into g, and g, restricts
the groups to the category of (3 + 1)-reducible groups.
Further restrictions follow from relation (3.4).

The translations in R, are those transformations
(3.1-3.2) for which R = 1. Hence, because q in (3.4)
has at least one irrational component, ¢ = 1. They are
given by

r=r+n 4.1)

!'=t—q.n+m, 4.2)

where n can be any vector of the basic lattice 4 and m
any integer. Rather than using the Bravais types in R,
we shall classify translation lattices for superspace
groups by an equivalence principle adapted to the
special role assigned to the basic lattice. Firstly, we call
the holohedral point group of the lattice the group of all
pairs (R, ¢), with R an orthogonal transformation in R,
and € = +1, such that the basic lattice A is left invariant
by R and (R,¢) satisfies (3.4) for some n* in the
reciprocal lattice 4*. Then two incommensurate struc-
tures belong to the same Bravais type if there are bases
of the basic lattices 4 and A4’ such that (i) the point
groups consisting of elements R and R’, respectively,
have the same (matrix) form, (ii) for corresponding
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elements of the holohedral point groups, & = &', (iii) the
rational vectors q, and g, have the same components,
up to a common sign.

In this way, 24 Bravais types (or classes) are found.
We denote them by the symbols of their superspace
groups (see below). The full list given in Table 1 shows
14 types which are straightforward extensions of
Bravais types in R, The remaining ten have various
kinds of centring in planes or spaces containing the ¢
axis. The latter are distinguished by their q, vectors. For
instance, if in (1.2) a= 4, # =0 and v is irrational (i.e.
q, = 3a* and q is directed along ¢*), there is a symmetry

Table 1. Reflection conditions for the 24 Bravais
classes

First column: number of the Bravais class. Second column: symbol
of the Bravais class. Third column: relation between H, K, L in
(5.1) and A, k, [ in (1.1). If not stated otherwise: H = h, K = k,
L = I The axes transform as the indices when putting m = 0 in
the third column. Fourth column: reflection conditions. Fifth
column: q; (top of each system) and q, with respect to the con-
ventional reciprocal basis a*, b*, c¢*.

Triclinic afy
1 p*l - - 000
Planar monoclinic (e unique) afo
2 PPgl/nll — —_ 000
3crm L=2+m L+m=2n 004
4 prym H+L=2n 000
Axial monoclinic (e unique) 00y
5 PPZI/’!; — - 000
6 AP¥m  H=2h+m H+m=2n 100
7 PR H+L=2n 000
8 B&Ym K=2k+m H+L=2nK+m=2n' 040
Orthorhombic 00y
9 ppmmm - 000
10 pPmmm K =2k +m K+m=2n 00
prmm | K=2k+m _ A
11 wenmm H—2h+m K+m=2nH+m=2n Ho
12 pimmm H+K+L=2n 000
13 penmm - — H+ K=2n 000
14 Lemmm H=h+m H+K+m=2n 100
15 pammm K+L=2n 000
16 A4mmm  H=2h+m H+m=2nK+ L=2n' 100
17 PFrrllrrllrle - H+ K= 2)1, H+L=2' 000
18 LFnl:nluglt H=h+m H+K+m=2nK+ L =2n" 100
Tetragonal 00y
19 pré/mmm - 000
H=h+k+m
20 wp/mmm K—Fk—h H+K+m=2n Ho
21 préymmm H+K+L=2n 000
Trigonal/hexagonal 00y
22 pRim - H—K+L=23n 000
sim |H=2h+k+m _ 1
23 RN (K:k—h H=K—m=3n 1o
24 pP&/mmm  _ — 000

1111
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translation which transforms coordinates according to
414Dasx->x+ 1, y->y,z->zt->t—4%So,in
R,, the x, ¢ plane is centred. The lattice is a centring of
the one with the same q; but with q, = 0.

We define superspace-group types — that is, sets of
equivalent superspace groups — by an equivalence
principle, which is almost the same as for normal space
groups. Two superspace groups are equivalent if there
are right-handed bases in position space, a choice of
origin in superspace and a choice of q (which is only
determined up to a sign and up to a reciprocal-
basic-lattice vector) such that (i) the matrices R, (ii) the
elements ¢, (iii) the components of s, (iv) the values of 7
(3.8) of G are the same as the corresponding ones for
the elements of G'.

The equivalence principle being stronger than for
space groups, nonequivalent superspace groups may be
equivalent as four-dimensional space groups. This
together with the fact that not all four-dimensional
space groups may occur as superspace groups, is the
reason why one cannot use here the list of four-
dimensional space groups as given by Fast & Janssen
(1968; only reducible ones) and by Brown, Biilow,
Neubiiser, Wondratschek & Zassenhaus (1978). The
given equivalence principles are special cases of those
given by Janner & Janssen (1979).

Superspace groups are denoted by a two-line symbol.
The upper line contains the Hermann—Mauguin sym-
bol for the basic space group. Below each generator g
of this symbol the corresponding g, is indicated by the
intrinsic parameters in the following way. If ¢ = —1,
there is always an origin such that 7 vanishes. Then g, is
indicated by 1. If ¢ = +1 the value of 7 is always one of
the following:

T=04 +} +§ +
RS s s 4.3)

symbol 1ls ¢t g h

The basic lattice type is determined by the basic space
group, whereas zero components of the vector q, follow
from the group of pairs (R,¢). Since the super-
space-group lattice is, according to (4.1-4.2), deter-
mined by A and q, the only missing information is the
vector q,. The symbol for this vector is a capital letter
appearing as prefix to the Bravais-type symbol of the
basic space group according to the following con-
vention:

q,= (000),, (300)4, (030)4, (009, (100)4,
symbol P A B C L

q,.= (010)*, (001)#3 (O%i)*s (%Oi)m (%O)m (%0)#
symbol M N U vV /4 R
(4.4)
As an example consider the group L2, The basic
space group is C2mb. Choosing the origin as in

International Tables for X-ray Crystallography (1969),
m,, is associated with $b. The (orthorhombic) space
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group has a lattice with conventional C-centred basis a,
b, c. A primitive basis is, for example, 3a + ib, —3a +
1b, c. The vector q; is along the ¢* [because only in this
direction is (3.6) satisfied] and q, = (100),, according to
the prefix L. If we denote r by xa + yb + ze = (x, , 2),
the transforms of (x,y,z,f) under the four basic
translations are

(x+%9y+%az3t—%)s (x_%ay'*'%azat"'%)s
e, y,z+ Lt—9), (xp, 2,6+ 1). 4.5)

The superspace-group symbol indicates that 2, is
combined with ¢ = —1 and m, with ¢ = +1, 7 = 3.
Hence, the corresponding transforms of (x, y, z, f) are

(x, =y, —z,—0), (X, —y + 3, 2, + %). (4.6)
In Table 2, all superspace groups for three-dimen-
sional incommensurate structures with d = 1 are given.
The groups are arranged according to the sequence
number of their basic space groups in International
Tables for X-ray Crystallography (1969). The columns
correspond to the Bravais types. In each row, the
bottom line of the symbol is indicated by a number
explained next to the symbol for the arithmetic crystal
class. The superspace groups may be denoted either by
the two-line symbol explained above or by a code
consisting of three numbers: the first one is the number
of the basic space group in International Tables for
X-ray Crystallography, eventually with the addition of
a letter to distinguish different settings; the second one
is the number of the Bravais class (Table 1) and the
third one indicates the bottom line as given in Table 2.
As an example the group BP"%2 can also be denoted as
28a.10.2.

5. Extinction rules

The diffraction vectors of a modulated crystal can be
written as in (1.1). The basis a, b, ¢ chosen there is not
necessarily a primitive one. Satellites in one row or
plane, as explained in § 1, are not assigned by (1.1) to
the same main reflection if q, # 0. To avoid this it is
convenient to choose another basis a,, b, ¢, in such a
way that

H = Ha¥ + Kb¥ + L¢* + mq;,, H, K, L, mintegers,

(5.1)
which means that the components of q, with respect to
this basis are integers. The basis a¥, b¥, ¢¥* can in most
cases be obtained from a*, b*, ¢* by halving one or two
of the basis vectors. Only in two cases (one tetragonal,
the other trigonal) are the axes also rotated.

On the other hand, one may express H always with
respect to a primitive basis of A*:

n, integer.
(5.2)

H=n, a} + n, a¥ + n;a¥ + mal,
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Table 2. The superspace groups in (3 + 1) dimensions, describing incommensurate structures with a one-
dimensional modulation

The superspace groups are represented by digits arranged in columns. Above each column are given the Bravais class number (Table 1)
and, as subheading, the arithmetic crystal class denoted by the symbol for its symmorphic superspace group. To the left of this, a legend
relates the digit to the superspace group bottom line. Each line begins with the basic space group (symbol top line) with (underlined) its
number in International Tables for X-ray Crystallography (1969). If a group occurs as basic space group in more than one line, an
additional letter is used for distinction (a, b, ezc.). A — sign in a column does not necessarily mean that the corresponding superspace group
does not exist. It may be equivalent to a group mentioned elsewhere in the table. Example: with basic space group Pc2m, no. 28, and
Bravais lattice type no. 10, the bottom lines 111 and s1s occur for the setting (top line) Pma2, when q; is parallel to the 2 axis. Bottom
lines 111 and s11 occur for the setting Pm2a (q; normal to a). Bottom line 111 only occurs for the setting Pc2m (q, normal to m). The
superspace group numbers are, respectively, 28a.10.1/2, 285.10.1/2 and 28¢.10.1.

Triclinic Monoclinic B (¢ unique) Orthorhombic P (cont.) Orthorhombic P (cont.)
Bravais class 1 Bravais class 4 Bravais class 9 10 11 Bravais class 9 10 11
1:0 P2 28a. Pma2 1234 12 - S4a. Pcca 21 -
1:1 PP 29a. Pca2, 14 1 - 54b. Pcaa 14 1 -
——————————————————————— S5a. B2 1 30a. Pcn2 12 1 - S4c. Pbab 1234 - -
L p1 1 —=====cc=======s======= 3la. Pmn2, 12 2 - 55a. Pbam 123 -
m=s===smsssss=ss======== 1:1 - 32a. Pba2 123 - 5 55b. Pcma 14 1
1:1 P 2:s P s 56a. Peen 2 -
_______________________ 5 56b. Pbnb 12 -
2 Pi 1 57a. Pcam 14 1
< 57b. Pmca 12 12
57c. Pbma 1234 -
Monoclinic P (¢ unique) 58a. Pnnm 12 -
I 58b. Pmnn 12 -
Bravais class 2 3 59a. Pmmn 123 -
- 59b. Pmnm 12 12
1:1 PR 7 60a. Pben 2 -
__ 60b. Pnca 12 -
_____________________ 1 60c. Pbna 12 -
3a. 1 . ir =
i i; : - Bravais class 7 8 2:1s1 PR BPimm yPimm 6l. Pbca 12 -
4a. . 3:1q1 62a. Pnma 14 -
=r———mmsco————=t======= 1:1 ) g2 0000 TTm T 62b. Pbnm 12 -
1:1 prm cPm 2:s ProBY 25¢. P2mm 12 1 1 62c. Pmen 12 -
2:s ! e 26c. P2,am 12 1 - —
——————————————————————— 5b. B2 12 1 26d. P2,ma 12 1 - .
6 Pm 12 1 2. P2aa 12 I _ Ortl-forhomblc 7
38d. Plem 1 1 1 Bravais class 12

1:1

2:s pr 47
3. P2 12 1
4b. P2, 1 1

1:1 P 4P7
6b. Pm 1 1
7b. P 1 1
Bravais class 5 6

1:11

2:s1 PR AT
10b. P2/m 12 1
116. P2,/m 1 1
13b. P2/b 12 1
14b. P2,/b 1 1

Orthorhombic P
Bravais class 9 10 11
1:111
2iis P B W
16. P222 12 1 1
17a. P222, 1 1 1
17b. P2,22 12 1 -
18a. P2.2,2 12 - -
18b. P2,22, 1 1 -
19. P22.2, 1 - -
1:111
2:s1s proTt BRI W
3:551
4:1ss
5:qq1
25a. Pmm2 123 12 1
26a. Pmc2, 12 12 1
26b. Pcm2, - 1 -
27a. Pcc2 12 1 1

53,

1
5




632

Table 2 (cont.)

THE SUPERSPACE GROUPS FOR INCOMMENSURATE CRYSTAL STRUCTURES

Orthorhombic F Orthorhombic 4 (cont.) Tetragonal P (cont.) Tetragonal / (cont.)
Bravais class 17 18 ' Bravais class 15 16 Bravais class 19 20 Bravais class 21
1:111 prm 1:111 paamm garmm 93. P4;22 12 12 82. 14 1
2:11s m ~in 2:1si nr A 9. P422 12 - .
1:li /4/m
2:si L
: 87. I4/m 12
2:551 88. Id4/a 1
3:1ss PP:TT WP:TT —======================
4:5ls 1:1ij prz
5:qq1 2:q11 Ut
6:qqs 3:s1i
99.  Pdmm 1234 13 97. 1422 123
100. P4bm 1234 56 98. 14,22 12
101. Pd,cm 13 13 cmemmsm—————mms—m—=—====
42b. F2mm 12 12 40b. Ama2 1234 - 102. P4nm 13 56 1:111
43b. F2dd 2 - 41b. Aba2 1234 - 103. Pdcc 121 2:551
. 104. Pdnc 12 5 3:lss
- —_ plimm
1: 105. P4,mc 12 1 4:5ls 1
2511 106. Pa;bc 125 .
- pFmmm § Fmmm
3:ssl 111 ni =====_?================= ﬂ I4mm 1234
——————————————————————— l:!!l prizm  yplam 108. I4cm 1234
69. Fmmm 123 123 2:1is i i 109. I4,nd 12
70. Fddd 122 - A Am2a 12 = 110. J4,cd 12
- 12 12 D
" ! ! l:ili prim
Orthorhombic C ;f“v pammn gammn :2 - o Ebkb v
Bravais class 13 14 3iss] 119. 1dm2 12
4:1s1 2 120. 74c2 1
L o em 00 mmmmmmmmmmm——mm e i s==s=c==s==ss=====s=====
o1 m em =:
2:11s m in 63b. Amam 1234 - 1:111 Jizm
----------------------- 63c. Amma 1234 - 115, 12 1 2:1is P
20a. €222, 1 1 64b. Abma 1234 - 116. Pdc2 1 ST T oo oooo e
2a. €222 12 12 64c. Acam 1234 - 117, Pib2 12 1 % ;z;"’ 12
mmmmmm——mmm———m—————o=  65h Ammm 1234 14 118. Pin2 1 122, 1424 !
1:111 66b. Amaa 1234 - Smm————s—o—oomom—m—==== ===1=T?l=l================
2:sls 67b. Acmm 1234 14 11011 :
3:s551 P L 68b. Acaa 1234 - 2:5is1 2:s 151
T 3:11ss
——————————————————————— 3:11ss S pIy/mmm
35a. Cmm2 123 123 4:sits 4is s vin
36a. Cmc2, 12 12 Tetragonal P 5:q1ql  Lpummm wpemmm e TTTTTTTTTTT
370 o3 PRI WhYT 139, I4/mmm 1234
37a. Cec2 2 12 i 1 20 i i ==
37a. Cec Bravais class 9 ___6_g_q_s _______________ _ 140, I4/mem 1234
123. P4/mmm 1234 13 141. I4,/amd 12
124. P4/mcc 12 1 142. 14//acd 12
125. P4/nbm 1234 56
126. P4/nnc 12 5
127. P4/mbm 1234 - Trigonal R
128. P4/mnc 12 N Bravais class 22
129. P4/nmm 1234 -
130. P4/ncc 12 -

2.

3: -
——————————————————————— 8l. P4 1 1
63a. Cmem 12 12 s===m===============
64a. Cmca 12 12 1:11
65a. Cmmm 123 123 2:si prom e
66a. Cccm 12 12 3:ql ! !
67a. Cmma 12 12 e o
68a. Ccca 12 12 83. P4/m 12 1

84. P4/m 1 1
85. Pd4/n 12 3
Orthorhombic 4 3
Bravais class 15 16
1:111
2:iis PR A

132, P4,/mem 13 13
133, Pdnbe 12 5
134. P4;/nnm 13 56
Ceo- 135 P4ymbe 12 -
136, P4,/mnin 13 -
137. Pdy/nmc 12 -
138. P4,/ncm 13 -

Tetragonal /
Bravais class 21
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Table 2 (cont.)

Trigonal R (cont.) Trigonal P (cont.)

Hexagonal P (cont.) Hexagonal P (cont.)

Bravais class 22 Bravais class 23 24 Bravais class 24 Bravais class 24
166. R3m 12 1:111 RPm peami 168. P6 1234 3:lss
167. Ric 1 2:151 S 169. P6, 1 4:sls
——————————————————————— 170. P 1 TR
% igmll - :2 171, p6, 12 183. P6mm 1234
. . c - 172. P6 12 184. P6. 14
T 220 L 4 184. cC
L‘M s=sm—===sco=ooa—--—==== 173, P6, 12 185. P6,cm 13
Bravais class 23 24 1:111 RPm prsim m======-z-=smcccczs====== 186. P6ymc 13
2:11s me 1:1 pe mmmmommmeemoocomeoooao
o B — L
mope ror o Ww
=======ss=-c=ss=-s===== i 187, Pém2 12
1:111 - 6/ oo b
i1 ern PP;{T 2:si PR 188. P6c2 1
162. P3im 12 12 175. P6/m 12 prizm
163. P3lc 1 1 176. P6,/m 1 2:1is m
- = ====s=s==== T
! RPIm pPimi 1:111 P622 189. P62m 12
2 e i 2:hi1 Lt 190, Pé2c 1
T T T T T 3:udd .
164. P3m] - 12 4:s11 -
165. Pic1 - L L:1111
2:s Isl
177. p622 1234 3:11ss P/
Hexagonal P 178. P6,22 ! 4:sits DT
> 179. P6,22 1
Bravais class 24 180. P6,22 2 TTTTTTTmomeomme e
181, P6,22 12 191 P6/mmm 1234
;}ll 182. P6,22 12 192. P6/mec 14
: e mmme 193. P6,/mem 13
3u prs T TTTTTTTTTTEEEEEER 194. P6,/mmc 13
4:5 1 1:111 prinm
——————————————————————— 2:ss1 1

The basis a,, a,, a, may be expressed in the basis a,, b,,
¢, as follows:

a,=S8,a,+S,b+5;¢

a,=S,a,+S,,b +Sy,¢ (5.3)

a3=S;3a,+ Sy b+ S;5;¢,.

Then one can write the integer coefficients #, in terms of
H, K, L, m. This puts restrictions on the indices H, X,
L, m which depend on the Bravais class. Conversely,
the Bravais class may be determined from systematic
extinctions among the indices.

As an example, we consider the Bravais class LF7772.
Then a*, b* c* span an orthogonal lattice and q, =
(100), has already integer components. Hence,
{a,, by, ¢} is the same as {a, b, ¢}, which is related to a
primitive basis via the matrix

0 4 3
S=l4 0 i (5.4)
3 40
Comparing (5.1) with (1.1), orie gets the relations
H=h+m, K=k, L=1L (5.5)

Moreover, the centring matrix .S (5.4) gives the relation
with the n;’s. Hence,

K+ L H+L—m
nl= ’ n2= s
2 2
H+K—m
n,:—z—. (5.6)

These are integers if and only if

K+L=2n H+L+m=2n" (nn'integers).

(5.7

On the other hand, if the spots can be described by
(5.1) with a¥, b¥, c¥ an orthogonal basis, with q; = yc*
and such that (5.7) is satisfied, then one may conclude
that the modulated crystal belongs to the Bravais class
LFmmm As a second example, consider the Bravais class
W‘! ‘l}'!l"']"';. Here a*, b*, ¢* span a tetragonal lattice and
q, = (340),.. The vectors H are in the form (5.1) if one
introduces the tetragonal basis a, =a + b, b, = b — a,
¢, =c. Then
H+K—m
nl 2 ’ n2 - 2 B

(5.8)
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Table 3. Special conditions due to the translation parts of symmetry operations
First column: reflections to which the conditions apply and orientation of the symmetry element. Second column: conditions and the

corresponding symmetry operation. For the classes 11, 20 and 23 the deviating conditions are given as footnotes to the Table. Just as in
Table 1, the conventional basis is chosen for a, b, c.

Planar monoclinic (¢ unique)

00LO c L=2n: (%')
HKOm ¢ K=2n: (11)) m=2n: (’:)
Axial monoclinic/orthorhombic/tetragonal (q, along ¢)
0Lm ¢ L=2n (ft) m=2n: (i) L+m=2n: (i')
HO00 a H=2n: (fi)
HKO0 ot H=2n: (‘1’) K=2n: (’1’) H+K=2n: (’1')
H+K=4dn (‘ii)
OKLm att K =2n: (117) K+L=2n: ('ll) K+L+m=2n (:)
L=2n: (‘1”) K+ m=2n: (2) K+ L=4n (‘11)
m=2n: (r:) L+m=2n: (g) K+L+2m=4n: (‘:)
Tetragonal
00Lm ¢ L=2n: (f!) L=4n (‘l‘l) 2L+ m=an: (42)
m=2n (3) m=4n (g)
HHLm a—bf L=2n: (i) m=2n (':) 2H + L —4n: (‘11)
Trigonal/hexagonal
00Lm ¢ L=2n (?3) m=2n (g) L=3n (f!) (]62)
L=6n: (f‘) 2L + m=6n: (:2) m=3n: (::), (?)
m=6n: (2) 3L+m=6n:(23)
OKLm a§ L=2n (f) m=2n (’;’) L+m=2n (g)
HHLm a—b L =2n: (T) m=2n (':) L+m=2n: (g)

1 Bravais class 11

§ Bravais class 23

OKLm a K +m=dn: (2) K+2L+m=dn: (’;)
HKO0 ¢ H+K=dn: (;’)
I Bravais class 20
OKLm a-—b L=2n: (i) m=2n (';1)
HHLm a L=2n: (i‘) L+m=2n (g) 2H + m=4n: (2)
m=2n: (m) 2H+2L +m=4n: (")
s q

OKLm 2a—-b L=2n

—0
~—
3
Il
[
B
—
“ 3
N —
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Hence there are systematic extinctions for H + K + m
odd. The conditions for the 24 Bravais classes are given
in Table 1.

Next to these general conditions, there are special
ones due to the translational parts of symmetry
operations. If f(H) is the Fourier transform of the
(electron) density function of an incommensurate
structure which is invariant under the transformation
(3.1-3.2), one has the following relation for H given by
(5.1):

S(H) = f(RH) exp {27ni[RH.s + em(é — q.9)] .

(5.9)
This simply expresses the invariance in reciprocal

space. So, if RH = H and ¢ = +1, a condition for

nonvanishing Fourier components is
H.s + m(d—q.s)=n, (5.10)

The translation s may be expressed in components with
reference to a,, by, ¢,:

n integer.

s =xa, + yb, + zc,. (5.1
Then (5.10) can be expressed in terms of 7 (3.8):
Hx+ Ky + Lz + mt=n, (5.12)

which is no longer explicitly dependent on the Bravais
type. The symbol for the superspace group contains
information about those x, y, z and 7 values which
cannot be transformed to zero by a change of origin.

As an example we take the superspace group Wi
which contains an element (4) with

R=m, ¢e¢=1, s=ib=}@a,+b), r=1

(5.13)

The vector H (5.1) is left invariant if H = K. Then the
spots are only nonvanishing if (5.12) is satisfied:

H+K+m

2 n. (5.14)

So the condition for the diffraction spots corres-
ponding to the existence of the symmetry element
(5.13) is H + K + m = 4n. This and the other
conditions due to nonprimitive translations are given in
Table 3.

6. Determination

To determine the complete list of superspace groups, we
have used two independent methods. Both start with the
determination of the Bravais types: for each three-
dimensional crystallographic point group it is checked if
there is an incommensurate vector q satisfying (3.4) for
all group elements combined with a factor . Since basic
lattice and vector q determine the lattice in R,, the
Bravais types are then found using the definitions from
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§ 4. In the first method, for each holohedral point group
the nonequivalent subgroups are determined, yielding
the arithmetic crystal classes. The superspace groups
are extensions in the group-theoretical sense of the point
group with a four-dimensional translation group. For
one representative point group from each arithmetic
crystal class all nonequivalent superspace groups are
then found with an algorithm developed for n-dimen-
sional space groups. The same algorithm has been used
by Fast & Janssen (1968). The difference between this
work and that of Fast & Janssen is that here only a part
of all point groups describe incommensurate structures
and one has to implement another (stronger) equiva-
lence criterion.

The second method uses the fact that each super-
space group is isomorphic — modulo integer increments
of t — with its basic space group. Hence, it can be
formed, like the latter, by a synthesis running parallel to
the well-known construction of point groups through
subsequent enlargement of the set of generators. For
instance,

added added
point groups 4 (m) 4/m (m) 4/mmm
space groups P4 (n) P4/n (m) P4/nbm
International Tables for
X-ray Crystallography
number 75 85 125

WP4 Inbm

P4/
superspace groups wrYs 2 729

WP‘,‘, n m
() ™ (0
Such pedigrees fulfil the condition that the added
element transforms into itself the group to which it is
added. A superspace group is determined completely by
the basic space group, one element with ¢ = —1 and all
the other ones with £ = +1 (that is, those which do not
invert q,). It is sufficient to find the values of 7 for the
latter elements only, as indicated above by a question
mark, because the 7 of the chosen element with ¢ = —1
can always be taken as zero. The question marks can
be filled in by checking the above condition for the ¢
part of the relevant operations g = (R, ¢, s, 7), using the
following relations:

ifg,g,(n)=g(r06=¢€6,1,=7,+ &7, 6.1)
ifg;'g, g,(0,0)=gi(r,N): el = ¢,
) =617, + &(g, — D1, (6.2)

In the transformation (6.2), only the case ¢, = +1 is
needed; then

6.3

In the above example, the group P4 has two inequiva-
lent axes. A rotation (R,) of 7n/2 around one axis,
multiplied by a translation (s;,) along a yields a 7/2
rotation (R;) about the other axis. Since in the Bravais
class no. 20 (WP4/mmm) the vector q is of the form

[
T =1¢6,1,.
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(34y),, the translation a has a ¢ part 7, = 4.
Accordingly, (6.1) with g, = (R, 6, =1,s=0,7,=17)
and g, = (1, 1, a, 7, = {) gives

=1, + % (6.4)
Since g, is of order 4, the possible 7, values are 0, § or §
and we have (7, 7;) = (0,4), (4,0) or (},—3}). The first
two are equivalent (superspace group 75.20.1), the last
is 75.20.2.

Adding the n mirror with ¢ = —1, we note that it
transforms g, and g; into each other. By (6.3), this
requires 7; = —t1,, which rules out the (0,%) case,
leaving only (4, —3%): 85.20.3. Finally, a mirror plane
parallel to the fourfold axes is added to obtain no. 125,
for instance the diagonal m plane. From the spatial
configuration (m lies between the axes) it follows that m
transforms g, into g3!. According to (6.3) this gives t;
= —t} = —t,, which agrees with the former result
independently of the 7 assigned to m. Hence, 7 can be
either 0 (125.20.5) or  (125.20.6). Since the mirror b in
P4/nbm is the product of m and g,, (6.1) yields T = +}
for b, so the complete pedigree becomes:

space group P4 P4/n  P4/nbm
possible superspace groups W}
W W W
et

Of course, different lines of ascendence are possible,
such as P4 — PApbm — P4/nbm, to arrive at no. 125,
which is in the most complicated arithmetic class of all;
the derivation of the majority of superspace groups is
simpler than in the above example.

Acta Cryst. (1981). A37, 636641
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Abstract

A formula has been derived for the mean-square error
in the phases of crystal reflections determined through
the multiwavelength anomalous scattering method. The

0567-7394/81/050636-06$01.00

error is written in terms of a simple function of the
positions in the complex plane of the ‘centres’ corres-
ponding to the different wavelengths. For the case of
three centres, the mean-square error is inversely
proportional to the area of the triangle formed by them.
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